233 research outputs found

    Decay of the Z Boson into Scalar Particles

    Full text link
    In extensions of the standard model, light scalar particles are often possible because of symmetry considerations. We study the decay of the Z boson into such particles. In particular, we consider for illustration the scalar sector of a recently proposed model of the 17-keV neutrino which satisfies all laboratory, astrophysical, and cosmological constraints.Comment: 11 pages (2 figures, not included) (Revised, Oct 1992). Some equations have been corrected and 1 figure has been eliminate

    Light-Heavy Symmetry: Geometric Mass Hierarchy for Three Families

    Get PDF
    The Universal Seesaw pattern coupled with a Light↔\leftrightarrowHeavy symmetry principle leads to the Diophantine equation N=∑i=1Nni\displaystyle N = \sum_{i=1}^Nn_i, where ni≄0n_i\geq 0 and distinct. Its unique non-trivial solution (3=0+1+2)(3=0+1+2) gives rise to the geometric mass hierarchy mWm_W, mWÏ”m_W\epsilon, mWÏ”2m_W\epsilon^2 for N=3N=3 fermion families. This is realized in a model where the hybrid (yet Up↔\leftrightarrowDown symmetric) quark mass relations mdmt≈mc2↔mumb≈ms2m_d m_t \approx m_c^2\leftrightarrow m_u m_b \approx m_s^2 play a crucial role in expressing the CKM mixings in terms of simple mass ratios, notably sin⁥ΞC≈mcmb\sin\theta_C \approx {m_c\over m_b}.Comment: 12 pages, no figures, Revtex fil

    Radiative Seesaw Mechanism at Weak Scale

    Get PDF
    We investigate an alternative seesaw mechanism for neutrino mass generation. Neutrino mass is generated at loop level but the basic concept of usual seesaw mechanism is kept. One simple model is constructed to show how this mechanism is realized. The applications of this seesaw mechanism at weak scale to cosmology and neutrino physics are discussed.Comment: 12 Pages, latex, no figure

    A New Class of Majoron-Emitting Double-Beta Decays

    Full text link
    Motivated by the excess events that have recently been found near the endpoints of the double beta decay spectra of several elements, we re-examine models in which double beta decay can proceed through the neutrinoless emission of massless Nambu-Goldstone bosons (majorons). Noting that models proposed to date for this process must fine-tune either a scalar mass or a VEV to be less than 10 keV, we introduce a new kind of majoron which avoids this difficulty by carrying lepton number L=−2L=-2. We analyze in detail the requirements that models of both the conventional and our new type must satisfy if they are to account for the observed excess events. We find: (1) the electron sum-energy spectrum can be used to distinguish the two classes of models from one another; (2) the decay rate for the new models depends on different nuclear matrix elements than for ordinary majorons; and (3) all models require a (pseudo) Dirac neutrino, having a mass of a several hundred MeV, which mixes with Îœe\nu_e.Comment: 43 pages, 10 figures (included), [figure captions are now included

    Topologically Stable Electroweak Flux Tube

    Full text link
    We show that for a large range of parameters in a SU(2)L×U(1)SU(2)_L\times U(1) electroweak theory with two Higgs doublets there may exist classically stable flux tubes of Z boson magnetic field. In a limit of an extra global U~(1)\tilde U(1) symmetry, these flux-tubes become topologically stable. These results are automatically valid even if U~(1)\tilde U(1) is gauged.Comment: 10 pages, LATE

    Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model

    Get PDF
    The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to Phys. Rev.

    Neutrinos, Axions and Conformal Symmetry

    Get PDF
    We demonstrate that radiative breaking of conformal symmetry (and simultaneously electroweak symmetry) in the Standard Model with right-chiral neutrinos and a minimally enlarged scalar sector induces spontaneous breaking of lepton number symmetry, which naturally gives rise to an axion-like particle with some unusual features. The couplings of this `axion' to Standard Model particles, in particular photons and gluons, are entirely determined (and computable) via the conformal anomaly, and their smallness turns out to be directly related to the smallness of the masses of light neutrinos.Comment: 10 pages, 2 figures, expanded version, to be published in EPJ

    Leptogenesis Bound on Spontaneous Symmetry Breaking of Global Lepton Number

    Full text link
    We propose a new class of leptogenesis bounds on the spontaneous symmetry breaking of global lepton number. These models have a generic feature of inducing new lepton number violating interactions, due to the presence of the Majorons. We analyzed the singlet Majoron model with right-handed neutrinos and find that the lepton number should be broken above 10^5 GeV to realize a successful leptogenesis because the annihilations of the right-handed neutrinos into the massless Majorons and into the standard model Higgs should go out of equilibrium before the sphaleron process is over. We then argue that this type of leptogenesis constraint should exist in the singlet-triplet Majoron models as well as in a class of R-parity violating supersymmetric Majoron models.Comment: 4 pages, 2 figure

    Possible Z-width probe of a "brane-world" scenario for neutrino masses

    Get PDF
    The possibility that the accurately known value of the Z width might furnish information about the coupling of two neutrinos to the Majoron (Nambu-Goldstone boson of spontaneous lepton number violation) is proposed and investigated in detail. Both the "ordinary" case and the case in which one adopts a "brane" world picture with the Majoron free to travel in extra dimensions are studied. Bounds on the dimensionless coupling constants are obtained, allowing for any number of extra dimensions and any intrinsic mass scale. These bounds may be applied to a variety of different Majoron models. If a technically natural see-saw model is adopted, the predicted coupling constants are far below these upper bounds. In addition, for this natural model, the effect of extra dimensions is to decrease the predicted partial Z width, the increase due to many Kaluza-Klein excitations being compensated by the decrease of their common coupling constant.Comment: RevTeX, 12 pages, 3 figure
    • 

    corecore